Pandas 数据筛选,去重结合group by
Pandas 数据筛选,去重结合group by需求
今小伙伴有一个Excel表, 是部门里的小伙9月份打卡记录, 关键字段如下:
姓名, 工号, 日期, 打卡方式, 时间, 详细位置, IP地址....
脱敏数据:
姓名
工号
日期
方式
时间
...
小赵
123
2019-09-01
GPS
08:37:50
....
小赵
123
2019-09-01
GPS
18:10:50
...
小陈
124
2019-09-01
GPS
08:47:30
...
小陈
124
2019-09-01
GPS
15:07:50
...
小陈
124
2019-09-01
GPS
18:07:5
...
小赵
123
2019-09-02
GPS
08:55:50
...
小李
125
2019-09-02
PC
13:10:24
即每个小伙伴, 一个月(30天), 正常打卡是60次, 上午,下午各一次/每天. 但真实情况是: 可能忘记打卡,或者一天打了n次, 现要求是 筛选出上班迟到(9:00) 的所有人员信息.
一看, 这用Excel, 透视一下姓名, 然后筛选日期...., 我感觉我的EXCEL水平怕是支撑不了, 但, Pandas可以呀, 5行代码搞定数据透视和条件过滤.
核心思路:
先按照性别 进行分组, 然后对每组中, 日期 字段去重, 保留第一条记录即可.筛选出时间 在 9:00 之后的记录, 存为Excel即可.完整代码如下:
import pandas as pd
# 1. 读取数据
data = pd.read_excel("9月打卡记录.xlsx")
data['时间'] = pd.to_datetime(data["时间"], format="%H:%M:%S")
# 2. 先按姓名分组, 再对日期去重,保留第一个值
ret = data.groupby("姓名", as_index=False).apply(lambda df:df.drop_duplicates("日期"))
# 3. 筛选日期,并保存为excel文件
ret[ret["时间"] >= "1900/1/1 09:00:00"].to_excel("9月迟到名单.xlsx", index=False)
该篇的目的是为了巩固这些常用的知识点, 如 group by 结合 apply 的用法, 匿名函数, 时间字符串处理等.当然会有更复杂情况, 如分组过后, 按日期去重, 保留的第一条记录, 不是最早打卡的那条? 那这就需要写排序逻辑了, 这里只是先抛砖引玉一波.
小结pandas 读取文件,pd.read_excel( ); pd.read_csv( ); pd.read_json( ); pd.read_sql_table( )...写入文件: pd.to_excel( ); pd.to_csv( ) ....字段筛选过滤等操作必须熟练.时间字符串 与 时间类型 的 互相转换datetime 模块group by 分组聚合, agg(); apply( ),结合Excel 透视表就很好理解关于映射: apply(函数名), 应用于整行or列, 对应的还有, applymap 作用每个元素, map()作用于某列Series.关于匿名函数lambda 的用法及与普通function的区别.后续还有更多工作案例分享, 基础, 高阶,都会有的.....耐心和恒心, 总会获得回报的.
版权声明
本文仅代表作者观点,不代表博信信息网立场。