pandas - groupby 深入及数据清洗案例
数据的split-apply-聚合, 案例-缺失值-重采样-加权平均-线性回归
import pandas as pd分割-apply-聚合大数据的MapReduce
import numpy as np
The most general-purpose GroupBy method is apply, which is the subject of the rest of this section. As illustrated in Figure 10-2, apply splits the object being manipulated into pieces, invokes the passed function on each piece, and then attempts to concatenate the pieces together.
Returning to the tipping dataset from before, suppose you wanted to select the top five tip_pct values by group. First, write a function that selects the rows with the largest values in a particular column:
tips = pd.read_csv('../examples/tips.csv')
tips.head(2)
total_bill
tip
smoker
day
time
size
0
16.99
1.01
No
Sun
Dinner
2
1
10.34
1.66
No
Sun
Dinner
3
tips['tip_pct'] = tips['tip'] / tips['total_bill']
def top(df, n=5, column='tip_pct'):
"""返回某列排序后后第n个元素"""
return df.sort_values(by=column)[-n:]
top(tips, n=6)
total_bill
tip
smoker
day
time
size
tip_pct
109
14.31
4.00
Yes
Sat
Dinner
2
0.279525
183
23.17
6.50
Yes
Sun
Dinner
4
0.280535
232
11.61
3.39
No
Sat
Dinner
2
0.291990
67
3.07
1.00
Yes
Sat
Dinner
1
0.325733
178
9.60
4.00
Yes
Sun
Dinner
2
0.416667
172
7.25
5.15
Yes
Sun
Dinner
2
0.710345
Now, if we group by smoker, say, and call apply with this function, we get the following:
"先按smoker分组, 然后组内调用top方法"
tips.groupby('smoker').apply(top)
'先按smoker分组, 然后组内调用top方法'
total_bill
tip
smoker
day
time
size
tip_pct
smoker
No
88
24.71
5.85
No
Thur
Lunch
2
0.236746
185
20.69
5.00
No
Sun
Dinner
5
0.241663
51
10.29
2.60
No
Sun
Dinner
2
0.252672
149
7.51
2.00
No
Thur
Lunch
2
0.266312
232
11.61
3.39
No
Sat
Dinner
2
0.291990
Yes
109
14.31
4.00
Yes
Sat
Dinner
2
0.279525
183
23.17
6.50
Yes
Sun
Dinner
4
0.280535
67
3.07
1.00
Yes
Sat
Dinner
1
0.325733
178
9.60
4.00
Yes
Sun
Dinner
2
0.416667
172
7.25
5.15
Yes
Sun
Dinner
2
0.710345
What has happened here? The top function is called on each row(类似RDD) group from the DataFrame, and then the results are glued together using pandas.concat, labeling the pieces with the group names. The result therefore has a hierarchical index whose inner level contains index values from the original DataFrame.
If you pass a function to apply that takes other arguments or keywords, you can pass these after the function:
tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')
total_bill
tip
smoker
day
time
size
tip_pct
smoker
day
No
Fri
94
22.75
3.25
No
Fri
Dinner
2
0.142857
Sat
212
48.33
9.00
No
Sat
Dinner
4
0.186220
Sun
156
48.17
5.00
No
Sun
Dinner
6
0.103799
Thur
142
41.19
5.00
No
Thur
Lunch
5
0.121389
Yes
Fri
95
40.17
4.73
Yes
Fri
Dinner
4
0.117750
Sat
170
50.81
10.00
Yes
Sat
Dinner
3
0.196812
Sun
182
45.35
3.50
Yes
Sun
Dinner
3
0.077178
Thur
197
43.11
5.00
Yes
Thur
Lunch
4
0.115982
Beyound these basic usage mechanics, getting the most out of apply may require some creativity. What occurs inside the function passed is up to you; it only needs to only return a pandas object or a scalar value. The rest of this chapter will mainly consist of examples showing you how to solve various using groupby.
可以自定义各种函数, 只要返回的是df, 然后, 又可以各种groupby..
You may recall that I earlier called describe on a GroupBy object:
result = tips.groupby('smoker')['tip_pct'].describe()
result
count
mean
std
min
25%
50%
75%
max
smoker
No
151.0
0.159328
0.039910
0.056797
0.136906
0.155625
0.185014
0.291990
Yes
93.0
0.163196
0.085119
0.035638
0.106771
0.153846
0.195059
0.710345
result.unstack('smoker')
smoker
count No 151.000000
Yes 93.000000
mean No 0.159328
Yes 0.163196
std No 0.039910
Yes 0.085119
min No 0.056797
Yes 0.035638
25% No 0.136906
Yes 0.106771
50% No 0.155625
Yes 0.153846
75% No 0.185014
Yes 0.195059
max No 0.291990
Yes 0.710345
dtype: float64
Inside GroupBy, when you invoke a method like describe, it's actually just a shortcut for:
f = lambda x: x.describe()过滤分组键group_keys=False
grouped.apply(f)
In the preceding examples, you see that the resulting object has a hierarchical index formed from the group keys along with the indexes of each piece of the original object. You can disable this by passing group_keys=False to groupby.
tips.groupby('smoker', group_keys=False).apply(top)
total_bill
tip
smoker
day
time
size
tip_pct
88
24.71
5.85
No
Thur
Lunch
2
0.236746
185
20.69
5.00
No
Sun
Dinner
5
0.241663
51
10.29
2.60
No
Sun
Dinner
2
0.252672
149
7.51
2.00
No
Thur
Lunch
2
0.266312
232
11.61
3.39
No
Sat
Dinner
2
0.291990
109
14.31
4.00
Yes
Sat
Dinner
2
0.279525
183
23.17
6.50
Yes
Sun
Dinner
4
0.280535
67
3.07
1.00
Yes
Sat
Dinner
1
0.325733
178
9.60
4.00
Yes
Sun
Dinner
2
0.416667
172
7.25
5.15
Yes
Sun
Dinner
2
0.710345
As you may recall from Chapter8, pandas has some tool, in particular cut and qcut, for slicing data up into buckets with bins of your choosing or by sample quantiles. Combineing these functions with groupby makes it convenient to perform bucket or quantile analysis on a dataset. Consider a simple random dataset and equal-length bucket categorization using cut:
frame = pd.DataFrame({
'data1': np.random.randn(1000),
'data2': np.random.randn(1000)
})
quartiles = pd.cut(frame.data1, 4)
quartiles[:10]
0 (-1.672, 0.361]
1 (-1.672, 0.361]
2 (-1.672, 0.361]
3 (-1.672, 0.361]
4 (0.361, 2.395]
5 (-1.672, 0.361]
6 (-1.672, 0.361]
7 (0.361, 2.395]
8 (-1.672, 0.361]
9 (0.361, 2.395]
Name: data1, dtype: category
Categories (4, interval[float64]): [(-3.714, -1.672] < (-1.672, 0.361] < (0.361, 2.395] < (2.395, 4.429]]
The Categorical object returned by cut can be passed directly to groupby. So we could compute a set of statistics for the data2 column like so:
def get_stats(group):
return {'min': group.min(), 'max': group.max,
'count': group.count(), 'mean': group.mean()}
grouped = frame.data2.groupby(quartiles)
grouped.apply(get_stats).unstack()
count
max
mean
min
data1
(-3.714, -1.672]
49
<bound method Series.max of 25 -0.372893\n2...
-0.2432
-2.16709
(-1.672, 0.361]
601
<bound method Series.max of 0 0.861588\n1...
-0.0253114
-2.90659
(0.361, 2.395]
340
<bound method Series.max of 4 0.228388\n7...
0.024466
-3.14779
(2.395, 4.429]
10
<bound method Series.max of 201 -0.519746\n4...
-0.267874
-0.835444
Theses were equal-length buckets; to compute equal-size buckets based on sample quantiles, use qcut.(等长度的'桶'), I'll pass lable=false to just get quantile numbers:
grouping = pd.qcut(frame.data1, 10, labels=False)
grouped = frame.data2.groupby(grouping)
grouped.apply(get_stats).unstack()
count
max
mean
min
data1
0
100
<bound method Series.max of 11 2.804563\n2...
-0.069347
-2.25593
1
100
<bound method Series.max of 1 -0.195015\n2...
-0.0408363
-2.75307
2
100
<bound method Series.max of 6 -1.087337\n1...
-0.212456
-2.88498
3
100
<bound method Series.max of 5 0.120671\n1...
0.0688246
-2.82311
4
100
<bound method Series.max of 22 0.058132\n3...
0.0401668
-2.69601
5
100
<bound method Series.max of 0 0.861588\n3...
-0.12863
-2.90659
6
100
<bound method Series.max of 47 0.543961\n5...
0.108924
-3.14779
7
100
<bound method Series.max of 4 0.228388\n7...
0.0391474
-1.8324
8
100
<bound method Series.max of 9 0.303886\n1...
-0.00849982
-2.19997
9
100
<bound method Series.max of 23 0.246278\n3...
-0.0121871
-2.40748
When cleaning up missing data, in some cases you will replace data observations using dropna, but in others you may want to impute(归咎于) (fill in) the null(NA) values using a fixed value or some value derived(派生) from the data(cj.随机森林预测). fillna is the right tool to use; for example, here i fill in NA values with the mean.
s = pd.Series(np.random.randn(6))
s[::2] = np.nan # 每个就na
s
0 NaN
1 -0.661528
2 NaN
3 0.144512
4 NaN
5 1.096004
dtype: float64
"用均值填充"
s.fillna(s.mean())
'用均值填充'
0 0.192996
1 -0.661528
2 0.192996
3 0.144512
4 0.192996
5 1.096004
dtype: float64
Suppose you need the fill value to vary(变化) by group. One way to do this is to group the data and use apply with a function that calls fillna on each data chunk. Here is some sample data on US states divided into eastern and western regions:
states = ['Ohio', 'New York', 'Vermont', 'Florida',
'Oregon', 'Nevada', 'California', 'Idaho']
group_key = ['East'] * 4 + ['West'] * 4
data = pd.Series(np.random.randn(8), index=states)
data
Ohio 0.508352
New York -1.029373
Vermont -0.506223
Florida -0.128709
Oregon 0.445320
Nevada 2.064584
California -0.795793
Idaho -1.115522
dtype: float64
Note that the syntax ['East'] * 4 produces a list containing four copies of the elements in ['East
']. Adding lists together concatenates them.
Let's set some values in the data to be missing:
data[['Vermont', 'Nevada', 'Idaho']] = np.nan
data
Ohio 0.508352
New York -1.029373
Vermont NaN
Florida -0.128709
Oregon 0.445320
Nevada NaN
California -0.795793
Idaho NaN
dtype: float64
data.groupby(group_key).mean() # 默认忽略缺失值
East -0.216577
West -0.175236
dtype: float64
We can fill the NA values using the group means like so:
fill_mean = lambda g: g.fillna(g.mean())
data.groupby(group_key).apply(fill_mean)
Ohio 0.508352
New York -1.029373
Vermont -0.216577
Florida -0.128709
Oregon 0.445320
Nevada -0.175236
California -0.795793
Idaho -0.175236
dtype: float64
In another case, you might have predifined fill values in your code that vary by group. Since the groups have a name attribute set internallh, we can use that:
fill_values = {'East': 0.5, 'West': -1}
fill_func = lambda g: g.fillna(fill_values[g.name])
data.groupby(group_key).apply(fill_func)
Ohio 0.508352Example: 随机采样
New York -1.029373
Vermont 0.500000
Florida -0.128709
Oregon 0.445320
Nevada -1.000000
California -0.795793
Idaho -1.000000
dtype: float64
Suppose you wanted to draw a random sample(with or without replacement) from a large dataset for Monte Calo(蒙特卡洛) simulation purposes or some other application. There are a number of ways to perform the "draws"; here we use the sample method for Series.
To demonstrate, here's a way to construct a deck of English-style playing cards:
# Hearts, Spades, Clubs, Diamonds
suits = 'H S C D'.split()
card_val = (list(range(1, 11)) + [10]*3) * 4
base_names = ['A'] + list(range(2, 11)) + ['J', 'K', 'Q']
cards = []
for suit in ['H', 'S', 'C', 'D']:
cards.extend(str(num) + suit for num in base_names)
deck = pd.Series(card_val, index=cards)
So now we have a Series of lenght 52 whose index contains card names and values are the ones used in Blackjack and other games
deck[:13]
AH 1
2H 2
3H 3
4H 4
5H 5
6H 6
7H 7
8H 8
9H 9
10H 10
JH 10
KH 10
QH 10
dtype: int64
Now, based on what i said before, drawing a hand of five cards from the deck could be written as:
def draw(deck, n=5):
return deck.sample(n)
draw(deck)
3H 3
5C 5
JD 10
4H 4
JH 10
dtype: int64
Suppose you wanted two random cards from each suit. Because the suit is the last character of each card name, we can group based on this and use apply:
get_suit = lambda card: card[-1] # last letter is suit
deck.groupby(get_suit).apply(draw, n=2)
C 3C 3
8C 8
D 4D 4
7D 7
H 4H 4
3H 3
S 2S 2
10S 10
dtype: int64
Alternatively, we could write:
deck.groupby(get_suit, group_keys=False).apply(draw, n=2)
KC 10Example: 加权平均和相关
3C 3
9D 9
KD 10
9H 9
6H 6
10S 10
7S 7
dtype: int64
Under the split-combine paradigm of groupby, operations between columns in a DataFrame or two Series, such as a group weighted average, are posible. As an example, take this dataset containing group keys, values, and some weights:
df = pd.DataFrame({'category': ['a', 'a', 'a', 'a',
'b', 'b', 'b', 'b'],
'data': np.random.randn(8),
'weights': np.random.rand(8)})
df
category
data
weights
0
a
0.434777
0.486455
1
a
-2.414575
0.374778
2
a
-0.682643
0.651142
3
a
0.538472
0.238194
4
b
1.001960
0.724147
5
b
-2.006634
0.770404
6
b
0.162167
0.262188
7
b
0.924946
0.723322
The group weighted average by category would then be:
grouped = df.groupby('category')
get_wavg = lambda g: np.average(g['data'], weights=g['weights'])
grouped.apply(get_wavg)
category
a -0.576765
b -0.043870
dtype: float64
As another example, consider a financial dataset originally obtained from Yahoo! Finance containing end-of-day prices for a few stocks and the S&P 500 index.
close_px = pd.read_csv('../examples/stock_px_2.csv',
parse_dates=True, index_col=0)
close_px.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2214 entries, 2003-01-02 to 2011-10-14
Data columns (total 4 columns):
AAPL 2214 non-null float64
MSFT 2214 non-null float64
XOM 2214 non-null float64
SPX 2214 non-null float64
dtypes: float64(4)
memory usage: 86.5 KB
close_px[-4:] # 选取后4条记录
AAPL
MSFT
XOM
SPX
2011-10-11
400.29
27.00
76.27
1195.54
2011-10-12
402.19
26.96
77.16
1207.25
2011-10-13
408.43
27.18
76.37
1203.66
2011-10-14
422.00
27.27
78.11
1224.58
One task of interest might be to compute a DataFrame consisting of the yearly correlations of daily returns with SPX. As one way to do this, we first create a function that computes the pairwise correlation of each column with the 'SPX' column:
spx_corr = lambda x: x.corrwith(x['SPX'])
Next, we compute percent change on close_px using pct_change:
rets = close_px.pct_change().dropna()
Lastly, we group these percent changes by year, which can be extracted from each row label with a one-line function that returns the year attribute of each datetime label:
get_year = lambda x: x.year
by_year = rets.groupby(get_year) # 函数作为分组的 key
by_year.apply(spx_corr)
AAPL
MSFT
XOM
SPX
2003
0.541124
0.745174
0.661265
1.0
2004
0.374283
0.588531
0.557742
1.0
2005
0.467540
0.562374
0.631010
1.0
2006
0.428267
0.406126
0.518514
1.0
2007
0.508118
0.658770
0.786264
1.0
2008
0.681434
0.804626
0.828303
1.0
2009
0.707103
0.654902
0.797921
1.0
2010
0.710105
0.730118
0.839057
1.0
2011
0.691931
0.800996
0.859975
1.0
You could also compute inter-column correlations. Here we compute the annual correlation between Apple and Microsoft:
by_year.apply(lambda g: g['AAPL'].corr(g['MSFT']))
2003 0.480868Example: 线性回归
2004 0.259024
2005 0.300093
2006 0.161735
2007 0.417738
2008 0.611901
2009 0.432738
2010 0.571946
2011 0.581987
dtype: float64
In the same theme as the previous example, you can use groupby to perform more complex group-wise statistical analysis, as long as the function returns a pandas object or scalar value.
For example, i can define the following regress function, which executes an ordinary least squares(OLS) regression on each chunk of data:
import statsmodels.api as sm
def regress(data, yvar, xvars):
"""最小二乘"""
Y = data[yvar]
X = data[xvars]
X['intercept'] = 1
result = sm.OLS(Y, X).fit()
return result.params
Now, to run a yearly linear regression of AAPL on SPX return , execute:
%time by_year.apply(regress, 'AAPL', ['SPX'])
Wall time: 277 ms
SPX
intercept
2003
1.195406
0.000710
2004
1.363463
0.004201
2005
1.766415
0.003246
2006
1.645496
0.000080
2007
1.198761
0.003438
2008
0.968016
-0.001110
2009
0.879103
0.002954
2010
1.052608
0.001261
2011
0.806605
0.001514
耐心和恒心, 总会获得回报的.
版权声明
本文仅代表作者观点,不代表博信信息网立场。