MongoDB聚合查询怎么实现,有哪些方法
这篇文章主要介绍“MongoDB聚合查询怎么实现,有哪些方法”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“MongoDB聚合查询怎么实现,有哪些方法”文章能帮助大家解决问题。
现在大家对于MongoDB聚合查询怎么实现,有哪些方法的内容应该都有一定的认识了吧,希望这篇能对大家有所帮助。最后,想要了解更多,欢迎关注博信,博信将为大家推送更多相关的文章。
MongoDB除了基本的查询功能之外,还提供了强大的聚合功能。
我们可以使用count,distinct,group,mapreduce,aggregate等方法实现聚合查询。
count
查询记录条数。
命令:
db.collectionName.count()
distinct
用来找出给定键的所有不同的值
命令:
db.collectionName(key)
group
分组查询。
参数说明:
key:用来分组文档的字段。
initial: 每组都分享一个”初始化函数“
$reduce: 执行的reduce函数,第一个参数是当前的文档对象,第二个参数是上一次function操作的累计对象,有多少个文档, $reduce就会调用多少次。
condition:(可选)执行过滤的条件
finalize:(可选)在reduce执行完成,结果集返回之前对结果集最终执行的函数。
MapReduce
命令:
db.runCommand( {mapreduce:字符串,集合名, map:函数,见下文 reduce:函数,见下文[,query:文档,发往map函数前先给过渡文档] [,sort:文档,发往map函数前先给文档排序] [,limit:整数,发往map函数的文档数量上限] [,out:字符串,统计结果保存的集合] [,keeptemp:布尔值,链接关闭时临时结果集合是否保存] [,finalize:函数,将reduce的结果送给这个函数,做最后的处理] [,scope:文档,js代码中要用到的变量] [,jsMode:布尔值,是否减少执行过程中BSON和JS的转换,默认true]//注:false时BSON-->JS-->map-->BSON-->JS-->reduce-->BSON,可处理非常大的mapreduce,<br> //true时BSON-->js-->map-->reduce-->BSON [,verbose:布尔值,是否产生更加详细的服务器日志,默认true] });
MongoDB中的MapReduce相当于关系数据库中的group by。
参数:
map函数:这个称为映射函数,里面会调用emit(key,value),集合会按照你指定的key进行映射分组。
reduce函数:这个称为简化函数,会对map分组后的数据进行分组简化,注意:在reduce(key,value)中的key就是emit中的key,vlaue为emit分组后的emit(value)的集合。
现在大家对于MongoDB聚合查询怎么实现,有哪些方法的内容应该都有一定的认识了吧,希望这篇能对大家有所帮助。最后,想要了解更多,欢迎关注博信,博信将为大家推送更多相关的文章。
版权声明
本文仅代表作者观点,不代表博信信息网立场。