如何进行MaxComputefullouterjoin改写leftantijoin的实践分析
如何进行MaxCompute full outer join改写left anti join的实践分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
简介: ods层数据同步时经常会遇到增全量合并的模型,即T-1天增量表 + T-2全量表 = T-1全量表。可以通过full outer join脚本来完成合并,但是数据量很大时非常消耗资源。下面将为您介绍在做增量数据的增加、更新时如何通过full outer join改写left anti join来实现的最佳实践。
背景
ods层数据同步时经常会遇到增全量合并的模型,即T-1天增量表 + T-2全量表 = T-1全量表
。可以通过full outer join脚本来完成合并,但是数据量很大时非常消耗资源。
insertoverwritetabletb_testpartition(ds='${bizdate}')selectcasewhena.idisnotnullthena.idesleb.idendasid ,if(a.nameisnotnull,a.name,b.name)asname,coalesce(a.age,b.age)asage --这3种写法一样,都是优先取delta表的字段from(select*fromtb_test_deltawhereds='${bizdate}')afullouterjoin(select*fromtb_testwhereds='${bizdate-1}')bona.id=b.id;
这种写法可实现新增和更新操作:
新增是指增量表中新出现的数据,而全量表中没有;
更新是指增量表和全量表中都有的数据,但优先取增量表的数据,覆盖历史表的数据。
如下图所示,R2_1是增量表当天去重后增量数据,M3是全量表前一天的数据,而J4_2_3则是full outer join的执行图。
将J4_2_3展开会发现里面将增量和全量进行了merge join,当数据量很大(1288亿条)时会产生很大的shuffle开销。此时优化方案就是将full outer join改成 union all,从而避免join shuffle。
优化模型
结论:full outer join改成hash cluster + left join +union all可以有效地降低计算成本,且有两种应用场景。先将模型进行抽象,假设有a和b两个表,a是增量表,b是全量表:
with aas(select*fromvalues(1,'111') ,(2,'two') ,(7,'777')as(id,name))--增量,bas(select*fromvalues(1,'') ,(2,'222') ,(3,'333') ,(4,'444')as(id,name))--全量
场景1:只合并新增数据到全量表
left anti join相当于not in,增量not in全量,过滤后只剩下完全新增的id,对全量中已有的id不修改:
--查询完全新增的idselect*fromaleftantijoinbona.id=b.id;--结果如下+------------+------+|id|name| +------------+------+|7|777| +------------+------+
--完全新增的合并全量表select*froma--增量表leftantijoinbona.id=b.id unionallselect*fromb--全量表--结果如下+------------+------+|id|name| +------------+------+|1|| |2|222| |3|333| |4|444| |7|777| +------------+------+
场景2:合并新增数据到全量表,且更新历史数据
全量not in增量,过滤后只剩下历史的id,然后union all增量,既新增也修改
--查询历史全量数据select*frombleftantijoinaona.id=b.id;--结果如下+------------+------+|id|name| +------------+------+|3|333| |4|444| +------------+------+
--合并新增数据到全量表,且更新历史数据select*fromb--全量表leftantijoinaona.id=b.idunionallselect*froma;--增量表--结果如下+------------+------+|id|name| +------------+------+|1|111| |2|two| |7|777| |3|333| |4|444| +------------+------+
优化实践
步骤1:表属性修改
表、作业属性修改,对原来的表、作业进行属性优化,可以提升优化效果。
setodps.sql.reducer.instances=3072;--可选。默认最大1111个reducer,1111哈希桶。altertabletable_nameclusteredby(contact_id)sortedby(contact_id)into3072buckets;--必选
步骤2:按照上述模型的场景1 或者 场景2进行代码改造。
这里先给出代码改造后的资源消耗对比:
可以发现hash cluster分桶操作在初始化有额外的开销,主要是按主键进行散列和排序,但是这是值得的,可一劳永逸,后续的读取速度非常快。以前每天跑需要8小时,现在除了分桶初始化需要1小时,以后每天实际只需要30分钟。
初始化执行图
图1:
M2是读全量表。
M4是读取增量表,在场景2的模型中增量表被读取了两次,其中:
R5_4是对主键去重(row_number)后用于后面的union all,里面包含了所有的增量数据;
R1_4是对主键去重(row_number)后用于left anti join,里面只包含了主键。
J3_1_2是left anti join,将它展开后看到这里还是有mergJoin,但是这只是初始化的操作,后面每天就不会有了。展开后如图2。
R6_3_5是将增量和全量进行union all,展开后如图3。
R7_6则是将索引信息写入元数据,如图3的MetaCollector1会在R7_6中sink。
因此:图1中除了R5_4和R1_4是去重必须的,有shuffle。还有J3_1_2和R6_3_5这两个地方有shuffle。
图2:
第二天以后的执行图
R3_2和R1_2是对增量去重必要对操作,有shuffle,这里忽略。
初始化执行图的J3_1_2和R6_3_5已经被合并到了M4_1_3,将其展开后如图2。即left anti join 和 union all这两步操作在一个阶段完成了,且这个阶段是Map 任务(M4_1_3),而不是Join任务或Reduce任务。而且全量表不在单独占用一个Map任务,也被合并到了M4_1_3,因此整个过程下来没有shuffle操作,速度提升非常明显。也就是说只需要一个M4_1_3就能完成所有到操作,直接sink到表。
R5_4则是将索引信息写入元数据,如图2的MetaCollector1会在R5_4中sink。
图2:
关于如何进行MaxCompute full outer join改写left anti join的实践分析问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注博信行业资讯频道了解更多相关知识。
版权声明
本文仅代表作者观点,不代表博信信息网立场。