学堂 学堂 学堂公众号手机端

hdu2604 Queuing (矩阵快速幂+动态规划)

lewis 1年前 (2024-03-27) 阅读数 16 #技术


Queuing




Time Limit: 10000/5000 MS (Java/Others)Memory Limit: 32768/32768 K (Java/Others)


Total Submission(s): 4022Accepted Submission(s): 1782




Problem Description


Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.



Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2

Lnumbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.


Your task is to calculate the number of E-queues mod M with length L by writing a program.





Input


Input a length L (0 <= L <= 10 6) and M.




Output


Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.




Sample Input


3 8 4 7 4 8




Sample Output


6 2 1




Author


WhereIsHeroFrom




Source


​​HDU 1st “Vegetable-Birds Cup” Programming Open Contest​​




Recommend


lcy|We have carefully selected several similar problems for you: ​​1588​​​ ​​1757​​​ ​​2606​​​ ​​2276​​​ ​​2603​​





解析:(以下为引用,具体来源未知)


用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂
构造一个矩阵:



代码:


#include<cstdio>
using namespace std;

int n,m;
int f[5]={0,2,4,6,9};
int a[4][4],b[4][4],c[4][4];

void multi(int (*x)[4],int (*y)[4])
{
int i,j,k;
for(i=0;i<4;i++)
for(j=0;j<4;j++)
for(c[i][j]=k=0;k<4;k++)
c[i][j]+=x[i][k]*y[k][j];
for(i=0;i<4;i++)
for(j=0;j<4;j++)
x[i][j]=c[i][j]%m;
}

int main()
{
//freopen("1.in","r",stdin);

int i,j;
while(scanf("%d%d",&n,&m)==2)
{
if(n<=4){printf("%d\n",f[n]%m);continue;}
a[0][0]=a[0][2]=a[0][3]=1,a[0][1]=0;
a[1][0]=1,a[1][1]=a[1][2]=a[1][3]=0;
a[2][0]=a[2][2]=a[2][3]=0,a[2][1]=1;
a[3][0]=a[3][1]=a[3][3]=0,a[3][2]=1;

for(i=0;i<4;i++)
for(j=0;j<4;j++)
b[i][j]=(i==j);
for(n-=4;n;multi(a,a),n>>=1)if(n&1)multi(b,a);
for(j=0,i=0;i<4;i++)j+=b[0][i]*f[4-i];
printf("%d\n",j%m);
}
return 0;
}




版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门