学堂 学堂 学堂公众号手机端

在PyTorch中,损失函数是用来衡量模型预测输出与真实标签之间的差异的函数。在训练神经网络时,损失函数的目标是最小化模型的预测误差,使模型能够更好地拟合训练数据并在未见过的数据上表现良好。 PyTorch中提供了各种损失函数,常用的包括交叉熵损失函数(CrossEntropyLoss)、均方误差损失函数(MSELoss)、二分类交叉熵损失函数(BCELoss)等。用户可以根据自己的任务需求选择合适的损失函数来训练模型。

lewis 2年前 (2023-11-01) 阅读数 7 #技术

在PyTorch中,损失函数是用来衡量模型预测输出与真实标签之间的差异的函数。在训练神经网络时,损失函数的目标是最小化模型的预测误差,使模型能够更好地拟合训练数据并在未见过的数据上表现良好。

PyTorch中提供了各种损失函数,常用的包括交叉熵损失函数(CrossEntropyLoss)、均方误差损失函数(MSELoss)、二分类交叉熵损失函数(BCELoss)等。用户可以根据自己的任务需求选择合适的损失函数来训练模型。


版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门