在Keras中实现Capsule网络可以通过使用keras.layers中的Capsule和PrimaryCap层来实现。下面是一个简单的示例
在Keras中实现Capsule网络可以通过使用keras.layers
中的Capsule
和PrimaryCap
层来实现。下面是一个简单的示例:
fromkerasimportlayers
fromkeras.modelsimportModel
#定义Capsule网络架构
defCapsuleModel(input_shape,n_class,routings):
x=layers.Input(shape=input_shape)
#定义第一个Capsule层
conv1=layers.Conv2D(128,(9,9),activation='relu',padding='valid')(x)
primarycaps=PrimaryCap(conv1,dim_capsule=8,n_channels=32,kernel_size=9,strides=2,padding='valid')
#定义第二个Capsule层
digitcaps=CapsuleLayer(num_capsule=n_class,dim_capsule=16,routings=routings)(primarycaps)
#输出分类结果
out_caps=Length()(digitcaps)
returnModel(x,out_caps)
#定义PrimaryCapsule层
defPrimaryCap(inputs,dim_capsule,n_channels,kernel_size,strides,padding):
output=layers.Conv2D(filters=dim_capsule*n_channels,kernel_size=kernel_size,strides=strides,padding=padding)(inputs)
outputs=layers.Reshape(target_shape=(-1,dim_capsule))(output)
returnlayers.Lambda(lambdax:x/K.sqrt(K.sum(K.square(x),axis=-1,keepdims=True)))(outputs)
#定义Capsule层
classCapsuleLayer(layers.Layer):
def__init__(self,num_capsule,dim_capsule,routings=3,kernel_initializer='glorot_uniform',**kwargs):
super(CapsuleLayer,self).__init__(**kwargs)
self.num_capsule=num_capsule
self.dim_capsule=dim_capsule
self.routings=routings
self.kernel_initializer=initializers.get(kernel_initializer)
defbuild(self,input_shape):
input_dim_capsule=input_shape[-1]
self.W=self.add_weight(shape=[input_dim_capsule,self.num_capsule*self.dim_capsule],initializer=self.kernel_initializer,name='W')
self.built=True
defcall(self,inputs):
inputs_expand=K.expand_dims(inputs,2)
inputs_tiled=K.tile(inputs_expand,[1,1,self.num_capsule,1])
inputs_hat=K.map_fn(lambdax:K.batch_dot(x,self.W,[2,1]),elems=inputs_tiled)
b=tf.zeros(shape=[K.shape(inputs_hat)[0],self.num_capsule,K.shape(inputs_hat)[2]])
assertself.routings>0
foriinrange(self.routings):
c=tf.nn.softmax(b,dim=1)
outputs=squash(K.batch_dot(c,inputs_hat,[2,2]))
ifi<self.routings-1:
b+=K.batch_dot(outputs,inputs_hat,[2,3])
returnoutputs
defcompute_output_shape(self,input_shape):
returninput_shape
#定义Length层
classLength(layers.Layer):
defcall(self,inputs,**kwargs):
returnK.sqrt(K.sum(K.square(inputs),-1))
defcompute_output_shape(self,input_shape):
returninput_shape[:-1]
#构建Capsule网络模型
model=CapsuleModel((28,28,1),10,3)
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
版权声明
本文仅代表作者观点,不代表博信信息网立场。