学堂 学堂 学堂公众号手机端

在Keras中实现Capsule网络可以通过使用keras.layers中的Capsule和PrimaryCap层来实现。下面是一个简单的示例

lewis 2年前 (2023-10-08) 阅读数 4 #技术

在Keras中实现Capsule网络可以通过使用keras.layers中的CapsulePrimaryCap层来实现。下面是一个简单的示例:

fromkerasimportlayers fromkeras.modelsimportModel #定义Capsule网络架构 defCapsuleModel(input_shape,n_class,routings): x=layers.Input(shape=input_shape) #定义第一个Capsule层 conv1=layers.Conv2D(128,(9,9),activation='relu',padding='valid')(x) primarycaps=PrimaryCap(conv1,dim_capsule=8,n_channels=32,kernel_size=9,strides=2,padding='valid') #定义第二个Capsule层 digitcaps=CapsuleLayer(num_capsule=n_class,dim_capsule=16,routings=routings)(primarycaps) #输出分类结果 out_caps=Length()(digitcaps) returnModel(x,out_caps) #定义PrimaryCapsule层 defPrimaryCap(inputs,dim_capsule,n_channels,kernel_size,strides,padding): output=layers.Conv2D(filters=dim_capsule*n_channels,kernel_size=kernel_size,strides=strides,padding=padding)(inputs) outputs=layers.Reshape(target_shape=(-1,dim_capsule))(output) returnlayers.Lambda(lambdax:x/K.sqrt(K.sum(K.square(x),axis=-1,keepdims=True)))(outputs) #定义Capsule层 classCapsuleLayer(layers.Layer): def__init__(self,num_capsule,dim_capsule,routings=3,kernel_initializer='glorot_uniform',**kwargs): super(CapsuleLayer,self).__init__(**kwargs) self.num_capsule=num_capsule self.dim_capsule=dim_capsule self.routings=routings self.kernel_initializer=initializers.get(kernel_initializer) defbuild(self,input_shape): input_dim_capsule=input_shape[-1] self.W=self.add_weight(shape=[input_dim_capsule,self.num_capsule*self.dim_capsule],initializer=self.kernel_initializer,name='W') self.built=True defcall(self,inputs): inputs_expand=K.expand_dims(inputs,2) inputs_tiled=K.tile(inputs_expand,[1,1,self.num_capsule,1]) inputs_hat=K.map_fn(lambdax:K.batch_dot(x,self.W,[2,1]),elems=inputs_tiled) b=tf.zeros(shape=[K.shape(inputs_hat)[0],self.num_capsule,K.shape(inputs_hat)[2]]) assertself.routings>0 foriinrange(self.routings): c=tf.nn.softmax(b,dim=1) outputs=squash(K.batch_dot(c,inputs_hat,[2,2])) ifi<self.routings-1: b+=K.batch_dot(outputs,inputs_hat,[2,3]) returnoutputs defcompute_output_shape(self,input_shape): returninput_shape #定义Length层 classLength(layers.Layer): defcall(self,inputs,**kwargs): returnK.sqrt(K.sum(K.square(inputs),-1)) defcompute_output_shape(self,input_shape): returninput_shape[:-1] #构建Capsule网络模型 model=CapsuleModel((28,28,1),10,3) model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])

版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门