学堂 学堂 学堂公众号手机端

Keras中怎么处理多输入和多输出模型

lewis 2年前 (2023-07-28) 阅读数 6 #技术

在Keras中处理多输入和多输出模型可以通过Functional API来实现。下面是一个简单的例子:

from keras.layers import Input, Dense
from keras.models import Model

# 定义输入层
input1 = Input(shape=(10,))
input2 = Input(shape=(5,))

# 定义共享的隐藏层
shared_layer = Dense(10, activation='relu')

# 连接输入层和隐藏层
output1 = shared_layer(input1)
output2 = shared_layer(input2)

# 定义输出层
output1 = Dense(1, activation='sigmoid')(output1)
output2 = Dense(1, activation='sigmoid')(output2)

# 创建模型
model = Model(inputs=[input1, input2], outputs=[output1, output2])

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy')

# 训练模型
model.fit([input_data1, input_data2], [output_data1, output_data2], epochs=10)

在这个例子中,我们定义了两个输入层input1input2,一个共享的隐藏层shared_layer,以及两个输出层output1output2。最后我们使用Model类将输入层和输出层连接起来,再编译模型并训练。

在训练模型时,我们需要将输入数据和输出数据分别传入fit方法中。input_data1input_data2是两个输入数据,output_data1output_data2是两个输出数据。


版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门