学堂 学堂 学堂公众号手机端

Keras中如何使用学习率调度器

lewis 2年前 (2023-04-19) 阅读数 7 #技术

Keras提供了一个Callback类,可以在模型训练过程中动态地调整学习率。可以通过在fit()方法中传入callbacks参数来使用学习率调度器。

下面是一个例子,使用ReduceLROnPlateau回调函数来动态地调整学习率:

from keras.callbacks import ReduceLROnPlateau

reduce_lr = ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.0001)

model.fit(x_train, y_train, epochs=100, callbacks=[reduce_lr])

在上面的例子中,ReduceLROnPlateau回调函数会在损失函数停止改善时降低学习率。其中,factor参数指定学习率降低的因子,patience参数指定在多少个epoch内没有改善时降低学习率,min_lr参数指定学习率的下限。


除了ReduceLROnPlateau回调函数,Keras还提供了其他一些学习率调度器的回调函数,如LearningRateScheduler、EarlyStopping等,可以根据具体的需求选择合适的学习率调度器。

版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门