学堂 学堂 学堂公众号手机端

Python中如何绘制各种折线图效果

lewis 6年前 (2019-07-09) 阅读数 8 #技术
今天这篇给大家分享的知识是“Python中如何绘制各种折线图效果”,小编觉得挺不错的,对大家学习或是工作可能会有所帮助,对此分享发大家做个参考,希望这篇“Python中如何绘制各种折线图效果”文章能帮助大家解决问题。


一、绘制折线图
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
from datetime import datetime
plt.figure(figsize=(16,10))
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.charts import Bar
import os
from pyecharts.options.global_options import ThemeType
# 读入数据
cnbodfgbsort=pd.read_csv("cnbodfgbsort.csv")

得到的cnbodfgbsort数据:

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

c = (
    Line()
    .add_xaxis(cnbodfgbsort.TYPE.tolist()) #X轴
    .add_yaxis("票价",cnbodfgbsort.PRICE.tolist()) #Y轴
    .add_yaxis("人次",cnbodfgbsort.PERSONS.tolist()) #Y轴
    .set_global_opts(title_opts=opts.TitleOpts()) #标题
)
c.render_notebook() # 显示

二、添加最小值最大值平均值

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

c = (
    Line()
    .add_xaxis(cnbodfgbsort.TYPE.tolist())
    .add_yaxis("票价",cnbodfgbsort.PRICE.tolist())
    .add_yaxis("人次",cnbodfgbsort.PERSONS.tolist(), markpoint_opts=opts.MarkPointOpts(
            data=[
                opts.MarkPointItem(type_="max", name="最大值"),
                opts.MarkPointItem(type_="min", name="最小值"),
            ]
        ),
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="average", name="平均值")]
        ),)
    .set_global_opts(title_opts=opts.TitleOpts())
)
c.render_notebook()

三、竖线提示信息

tooltip_opts=opts.TooltipOpts(trigger="axis")

四、显示工具栏

tooltip_opts=opts.TooltipOpts(trigger="axis")

五、实心面积填充

.set_series_opts(
     areastyle_opts=opts.AreaStyleOpts(opacity=0.5), # 透明度
     label_opts=opts.LabelOpts(is_show=False), # 是否显示标签
 )

六、是否跳过空值

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

y = Faker.values()
y[3], y[5] = None, None
c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", y, is_connect_nones=True)
    .set_global_opts(title_opts=opts.TitleOpts())
    .render("line_connect_null.html")
)

如下图:y[3],y[5]数据都是空值,如果直接显示的话,图表会出错

# 使用这个参数来跳过空值,避免折现断掉
is_connect_nones=True
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

y = Faker.values()
y[3], y[5] = None, None
c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", y, is_connect_nones=True)
    .set_global_opts(title_opts=opts.TitleOpts())
)
c.render_notebook()

​

七、折线光滑化

is_smooth=True

八、多X轴

参考官网:》multiple_x_axes

九、阶梯图

is_step=True

现在大家对于Python中如何绘制各种折线图效果的内容应该都有一定的认识了吧,希望这篇能对大家有所帮助。最后,想要了解更多,欢迎关注博信,博信将为大家推送更多相关的文章。
版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门