学堂 学堂 学堂公众号手机端

Pandas类型转换的多种情况和实现是怎样

lewis 6年前 (2019-07-14) 阅读数 9 #技术
本篇内容介绍了“Pandas类型转换的多种情况和实现是怎样”的有关知识,在实际项目的操作过程或是学习过程中,不少人都会遇到这样的问题,接下来就让小编带大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!



转换为字符串类型
tips['sex_str'] = tips['sex'].astype(str)

转换为数值类型

转为数值类型还可以使用to_numeric()函数

DataFrame每一列的数据类型必须相同,当有些数据中有缺失,但不是NaN时(如missing,null等),会使整列数据变成字符串类型而不是数值型,这个时候可以使用to_numeric处理

#创造包含'missing'为缺失值的数据
tips_sub_miss = tips.head(10)
tips_sub_miss.loc[[1,3,5,7],'total_bill'] = 'missing'
tips_sub_miss

自动转换为了字符串类型:

使用astype转换报错:

tips_sub_miss['total_bill'].astype(float)

使用to_numeric()函数:

直接使用to_numeric()函数还是会报错,添加errors参数

errors可变参数:

ignore 遇到错误跳过 (只是跳过没转类型) coerce 遇到不能转的值强转为NaN
pd.to_numeric(tips_sub_miss['total_bill'],errors='ignore')
pd.to_numeric(tips_sub_miss['total_bill'],errors='coerce')

to_numeric向下转型:

downcast参数

integersigned最小的有符号int dtype float 最小的float dtype unsigned 最小的无符号int dtype

downcast参数设置为float之后, total_bill的数据类型由float64变为float32

pd.to_numeric(tips_sub_miss['total_bill'],errors='coerce',downcast='float')

分类数据(Category)

利用pd.Categorical()创建categorical数据,Categorical()常用三个参数

参1 values,如果values中的值,不在categories参数中,会被NaN代替 参2 categories,指定可能存在的类别数据 参3 ordered, 是否指定顺序
s = pd.Series(pd.Categorical(["a","b","c","d"],categories=['c','b','a']))

分类数据排序会自动根据分类排序:

ordered指定顺序:

from pandas.api.types import CategoricalDtype
# 创建一个分类  ordered  指定顺序
cat = CategoricalDtype(categories=['B','D','A','C'],ordered=True)
# 指定series_cat1转换类型为创建的分类类型
series_cat1 = series_cat.astype(cat)
print(series_cat.sort_values())
print(series_cat1.sort_values())

数据类型小结

知识点 内容 Numpy的特点 1. Numpy是一个高效科学计算库,Pandas的数据计算功能是对Numpy的封装

2. ndarray是Numpy的基本数据结构,Pandas的Series和DataFrame好多函数和属性都与ndarray一样

3. Numpy的计算效率比原生Python效率高很多,并且支持并行计算 Pandas数据类型转换 1. Pandas除了数值型的int 和 float类型外,还有object ,category,bool,datetime类型

2. 可以通过as_type 和 to_numeric 函数进行数据类型转换 Pandas 分类数据类型 1. category类型,可以用来进行排序,并且可以自定义排序顺序

2. CategoricalDtype可以用来定义顺序
关于“Pandas类型转换的多种情况和实现是怎样”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注博信,小编每天都会为大家更新不同的知识。
版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门