Pandas类型转换的多种情况和实现是怎样
本篇内容介绍了“Pandas类型转换的多种情况和实现是怎样”的有关知识,在实际项目的操作过程或是学习过程中,不少人都会遇到这样的问题,接下来就让小编带大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
转换为字符串类型
知识点
内容
Numpy的特点
1. Numpy是一个高效科学计算库,Pandas的数据计算功能是对Numpy的封装
2. ndarray是Numpy的基本数据结构,Pandas的Series和DataFrame好多函数和属性都与ndarray一样
3. Numpy的计算效率比原生Python效率高很多,并且支持并行计算 Pandas数据类型转换 1. Pandas除了数值型的int 和 float类型外,还有object ,category,bool,datetime类型
2. 可以通过as_type 和 to_numeric 函数进行数据类型转换 Pandas 分类数据类型 1. category类型,可以用来进行排序,并且可以自定义排序顺序
2. CategoricalDtype可以用来定义顺序
关于“Pandas类型转换的多种情况和实现是怎样”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注博信,小编每天都会为大家更新不同的知识。
转换为字符串类型
tips['sex_str'] = tips['sex'].astype(str)
转换为数值类型
转为数值类型还可以使用to_numeric()函数
DataFrame每一列的数据类型必须相同,当有些数据中有缺失,但不是NaN时(如missing,null等),会使整列数据变成字符串类型而不是数值型,这个时候可以使用to_numeric处理
#创造包含'missing'为缺失值的数据 tips_sub_miss = tips.head(10) tips_sub_miss.loc[[1,3,5,7],'total_bill'] = 'missing' tips_sub_miss
自动转换为了字符串类型:
使用astype转换报错:
tips_sub_miss['total_bill'].astype(float)
使用to_numeric()函数:
直接使用to_numeric()函数还是会报错,添加errors参数
errors
可变参数:
ignore
遇到错误跳过 (只是跳过没转类型)
coerce
遇到不能转的值强转为NaN
pd.to_numeric(tips_sub_miss['total_bill'],errors='ignore')
pd.to_numeric(tips_sub_miss['total_bill'],errors='coerce')
to_numeric向下转型:
downcast
参数
integer
和 signed
最小的有符号int dtype
float
最小的float dtype
unsigned
最小的无符号int dtype
downcast参数设置为float之后, total_bill的数据类型由float64变为float32
pd.to_numeric(tips_sub_miss['total_bill'],errors='coerce',downcast='float')
分类数据(Category)
利用pd.Categorical()
创建categorical数据,Categorical()常用三个参数
s = pd.Series(pd.Categorical(["a","b","c","d"],categories=['c','b','a']))
分类数据排序会自动根据分类排序:
ordered指定顺序:
from pandas.api.types import CategoricalDtype # 创建一个分类 ordered 指定顺序 cat = CategoricalDtype(categories=['B','D','A','C'],ordered=True) # 指定series_cat1转换类型为创建的分类类型 series_cat1 = series_cat.astype(cat) print(series_cat.sort_values()) print(series_cat1.sort_values())
数据类型小结
2. ndarray是Numpy的基本数据结构,Pandas的Series和DataFrame好多函数和属性都与ndarray一样
3. Numpy的计算效率比原生Python效率高很多,并且支持并行计算 Pandas数据类型转换 1. Pandas除了数值型的int 和 float类型外,还有object ,category,bool,datetime类型
2. 可以通过as_type 和 to_numeric 函数进行数据类型转换 Pandas 分类数据类型 1. category类型,可以用来进行排序,并且可以自定义排序顺序
2. CategoricalDtype可以用来定义顺序
关于“Pandas类型转换的多种情况和实现是怎样”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注博信,小编每天都会为大家更新不同的知识。
版权声明
本文仅代表作者观点,不代表博信信息网立场。