Python中怎么通过SymPy库来解微积分
这篇文章我们来了解“Python中怎么通过SymPy库来解微积分”的内容,小编通过实际的案例向大家展示了操作过程,简单易懂,有需要的朋友可以参考了解看看,那么接下来就跟随小编的思路来往下学习吧,希望对大家学习或工作能有帮助。
之前我们分享过很多有用有趣的Python库,今天继续介绍一个:
SymPy 是一个Python库,专注于符号数学,它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。
举一个简单的例子,比如说展开二次方程:
fromsympyimport* x = Symbol('x') y = Symbol('y') d = ((x+y)**2).expand() print(d) # 结果:x**2 + 2*x*y + y**2
你可以随便输入表达式,即便是十次方,它都能轻易的展开,非常方便:
fromsympyimport* x = Symbol('x') y = Symbol('y') d = ((x+y)**10).expand() print(d) # 结果:x**10 + 10*x**9*y + 45*x**8*y**2 + 120*x**7*y**3 + 210*x**6*y**4 + 252*x**5*y**5 + 210*x**4*y**6 + 120*x**3*y**7 + 45*x**2*y**8 + 10*x*y**9 + y**10
下面就来讲讲这个模块的具体使用方法和例子。
1.准备
请选择以下任一种方式输入命令安装依赖:
1. Windows 环境 打开 Cmd (开始-运行-CMD)。
2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.
pipinstallSympy
2.基本使用
简化表达式(化简)
sympy支持三种化简方式,分别是普通化简、三角化简、指数化简。
普通化简 simplify( ):
fromsympyimport* x = Symbol('x') d = simplify((x**3+ x**2- x -1)/(x**2+2*x +1)) print(d) # 结果:x - 1
三角化简 trigsimp( ):
fromsympyimport* x = Symbol('x') d = trigsimp(sin(x)/cos(x)) print(d) # 结果:tan(x)
指数化简 powsimp( ):
fromsympyimport* x = Symbol('x') a = Symbol('a') b = Symbol('b') d = powsimp(x**a*x**b) print(d) # 结果:x**(a + b)
解方程 solve()
第一个参数为要解的方程,要求右端等于0,第二个参数为要解的未知数。
如一元一次方程:
fromsympyimport* x = Symbol('x') d = solve(x *3-6, x) print(d) # 结果:[2]
二元一次方程:
fromsympyimport* x = Symbol('x') y = Symbol('y') d = solve([2* x - y -3,3* x + y -7],[x, y]) print(d) # 结果:{x: 2, y: 1}
求极限 limit()
dir=’+’表示求解右极限,dir=’-‘表示求解左极限:
fromsympyimport* x = Symbol('x') d = limit(1/x,x,oo,dir='+') print(d) # 结果:0 d = limit(1/x,x,oo,dir='-') print(d) # 结果:0
求积分integrate( )
先试试求解不定积分:
fromsympyimport* x = Symbol('x') d = integrate(sin(x),x) print(d) # 结果:-cos(x)
再试试定积分:
fromsympyimport* x = Symbol('x') d = integrate(sin(x),(x,0,pi/2)) print(d) # 结果:1
求导 diff()
使用 diff 函数可以对方程进行求导:
fromsympyimport* x = Symbol('x') d = diff(x**3,x) print(d) # 结果:3*x**2 d = diff(x**3,x,2) print(d) # 结果:6*x
解微分方程 dsolve( )
以y′=2xy为例:
fromsympyimport* x = Symbol('x') f = Function('f') d = dsolve(diff(f(x),x) -2*f(x)*x,f(x)) print(d) # 结果:Eq(f(x), C1*exp(x**2))
3.实战一下
今天群里有同学问了这个问题,“大佬们,我想问问,如果这个积分用Python应该怎么写呢,谢谢大家”:
# Python 实用宝典 fromsympyimport* x = Symbol('x') y = Symbol('y') d = integrate(x-y, (y,0,1)) print(d) # 结果:x - 1/2
为了计算这个结果,integrate的第一个参数是公式,第二个参数是积分变量及积分范围下标和上标。
运行后得到的结果便是 x - 1/2 与预期一致。
如果大家也有求解微积分、复杂方程的需要,可以试试sympy,它几乎是完美的存在。
关于“Python中怎么通过SymPy库来解微积分”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注博信,小编每天都会为大家更新不同的知识。
版权声明
本文仅代表作者观点,不代表博信信息网立场。