学堂 学堂 学堂公众号手机端

【路径规划-TSP问题】基于遗传算法求解旅行商问题附matlab代码(无人机路径规划)

lewis 6年前 (2019-06-16) 阅读数 13 #技术
1 内容介绍

首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编码同用其它高级程序语言编程的差异所在.

2 完整代码

function varargout = tsp_ga(varargin)

%TSP_GA Finds a (near) optimal solution to the Traveling Salesman Problem (TSP)


% by setting up a Genetic Algorithm (GA) to search for the shortest

% path (least distance needed to travel to each city exactly once)

%

% TSP_GA(NUM_CITIES) where NUM_CITIES is an integer representing the number

% of cities there are (default = 50)

%

% For example TSP_GA(25) solves the TSP for 25 random cities

%

% TSP_GA(CITIES) where CITIES is an Nx2 matrix representing the X/Y

% coordinates of user specified cities

%

% For example TSP_GA(10*RAND(30,2)) solves the TSP for the 30 random

% cities in the (10*RAND(30,2)) matrix

%

% TSP_GA(..., OPTIONS) or TSP_GA(OPTIONS) where OPTIONS include one or

% more of the following in any order:

% '-NOPLOT' turns off the plot showing the progress of the GA

% '-RESULTS' turns on the plot showing the final results

% as well as the following parameter pairs:

% 'POPSIZE', VAL sets the number of citizens in the GA population

% VAL should be a positive integer (divisible by 4)

% -- default = 100

% 'MRATE', VAL sets the mutation rate for the GA

% VAL should be a float between 0 and 1, inclusive

% -- default = 0.85

% 'NUMITER', VAL sets the number of iterations (generations) for the GA

% VAL should be a positive integer

% -- default = 500

%

% Example:

% % Solves the TSP for 20 random cities using a population size of 60,

% % a 75% mutation rate, and 250 GA iterations

% tsp_ga(20, 'popsize', 60, 'mrate', 0.75, 'numiter', 250);

%

% Example:

% % Solves the TSP for 30 random cities without the progress plot

% [sorted_cities, best_route, distance] = tsp_ga(30, '-noplot');

%

% Example:

% % Solves the TSP for 40 random cities using 1000 GA iterations and

% % plots the results

% cities = 10*rand(40, 2);

% [sorted_cities] = tsp_ga(cities, 'numiter', 1000, '-results');

%

% NOTE: It is possible for TSP_GA to continue where it left off on a

% previous set of cities by using the sorted city output matrix as an

% input, as in the following example:

% cities = 10*rand(60, 2);

% sorted_cities = tsp_ga(cities, 'numiter', 100);

% figure; plot(sorted_cities(:,1), sorted_cities(:,2), '.-')

% sorted_cities2 = tsp_ga(sorted_cities);

% figure; plot(sorted_cities2(:,1), sorted_cities2(:,2), '.-')


% AUTHOR: Joseph Kirk (c) 1/2007

% EMAIL: jdkirk630 at gmail dot com


error(nargchk(0, 9, nargin));

num_cities = 50; cities = 10*rand(num_cities, 2);

pop_size = 100; num_iter = 500; mutate_rate = 0.85;

show_progress = 1; show_results = 0;


% Process Inputs

cities_flag = 0; option_flag = 0;

for var = varargin

if option_flag

if ~isfloat(var{1}), error(['Invalid value for option ' upper(option)]); end

switch option

case 'popsize', pop_size = 4*ceil(real(var{1}(1))/4); option_flag = 0;

case 'mrate', mutate_rate = min(abs(real(var{1}(1))), 1); option_flag = 0;

case 'numiter', num_iter = round(real(var{1}(1))); option_flag = 0;

otherwise, error(['Invalid option ' upper(option)])

end

elseif ischar(var{1})

switch lower(var{1})

case '-noplot', show_progress = 0;

case '-results', show_results = 1;

otherwise, option = lower(var{1}); option_flag = 1;

end

elseif isfloat(var{1})

if cities_flag, error('CITIES or NUM_CITIES may be specified, but not both'); end

if length(var{1}) == 1

num_cities = round(real(var{1}));

if num_cities < 2, error('NUM_CITIES must be an integer greater than 1'); end

cities = 10*rand(num_cities, 2); cities_flag = 1;

else

cities = real(var{1});

[num_cities, nc] = size(cities); cities_flag = 1;

if or(num_cities < 2, nc ~= 2)

error('CITIES must be an Nx2 matrix of floats, with N > 1')

end

end

else

error('Invalid input argument.')

end

end


% Construct the Distance Matrix

dist_matx = zeros(num_cities);

for ii = 2:num_cities

for jj = 1:ii-1

dist_matx(ii, jj) = sqrt(sum((cities(ii, :)-cities(jj, :)).^2));

dist_matx(jj, ii) = dist_matx(ii, jj);

end

end


% Plot Cities and Distance Matrix in a Figure

if show_progress

figure(1)

subplot(2, 2, 1)

plot(cities(:,1), cities(:,2), 'b.')

if num_cities < 75

for c = 1:num_cities

text(cities(c, 1), cities(c, 2), [' ' num2str(c)], 'Color', 'k', 'FontWeight', 'b')

end

end

title([num2str(num_cities) ' Cities'])

subplot(2, 2, 2)

imagesc(dist_matx)

title('Distance Matrix')

colormap(flipud(gray))

end


% Initialize Population

pop = zeros(pop_size, num_cities);

pop(1, :) = (1:num_cities);

for k = 2:pop_size

pop(k, :) = randperm(num_cities);

end


if num_cities < 25, display_rate = 1; else display_rate = 10; end

fitness = zeros(1, pop_size);

best_fitness = zeros(1, num_iter);

for iter = 1:num_iter

for p = 1:pop_size

d = dist_matx(pop(p, 1), pop(p, num_cities));

for city = 2:num_cities

d = d + dist_matx(pop(p, city-1), pop(p, city));

end

fitness(p) = d;

end

[best_fitness(iter) index] = min(fitness);

best_route = pop(index, :);

% Plots

if and(show_progress, ~mod(iter, display_rate))

figure(1)

subplot(2, 2, 3)

route = cities([best_route best_route(1)], :);

plot(route(:, 1), route(:, 2)', 'b.-')

title(['Best GA Route (dist = ' num2str(best_fitness(iter)) ')'])

subplot(2, 2, 4)

plot(best_fitness(1:iter), 'r', 'LineWidth', 2)

axis([1 max(2, iter) 0 max(best_fitness)*1.1])

end

% Genetic Algorithm Search

pop = iteretic_algorithm(pop, fitness, mutate_rate);

end


if show_progress

figure(1)

subplot(2, 2, 3)

route = cities([best_route best_route(1)], :);

plot(route(:, 1), route(:, 2)', 'b.-')

title(['Best GA Route (dist = ' num2str(best_fitness(iter)) ')'])

subplot(2, 2, 4)

plot(best_fitness(1:iter), 'r', 'LineWidth', 2)

title('Best Fitness')

xlabel('Generation')

ylabel('Distance')

axis([1 max(2, iter) 0 max(best_fitness)*1.1])

end


if show_results

figure(2)

imagesc(dist_matx)

title('Distance Matrix')

colormap(flipud(gray))

figure(3)

plot(best_fitness(1:iter), 'r', 'LineWidth', 2)

title('Best Fitness')

xlabel('Generation')

ylabel('Distance')

axis([1 max(2, iter) 0 max(best_fitness)*1.1])

figure(4)

route = cities([best_route best_route(1)], :);

plot(route(:, 1), route(:, 2)', 'b.-')

for c = 1:num_cities

text(cities(c, 1), cities(c, 2), [' ' num2str(c)], 'Color', 'k', 'FontWeight', 'b')

end

title(['Best GA Route (dist = ' num2str(best_fitness(iter)) ')'])

end


[not_used indx] = min(best_route);

best_ga_route = [best_route(indx:num_cities) best_route(1:indx-1)];

if best_ga_route(2) > best_ga_route(num_cities)

best_ga_route(2:num_cities) = fliplr(best_ga_route(2:num_cities));

end

varargout{1} = cities(best_ga_route, :);

varargout{2} = best_ga_route;

varargout{3} = best_fitness(iter);


%--------------------------------------

% GENETIC ALGORITHM FUNCTION

%--------------------------------------

function new_pop = iteretic_algorithm(pop, fitness, mutate_rate)


[p, n] = size(pop);


% Tournament Selection - Round One

new_pop = zeros(p, n);

ts_r1 = randperm(p);

winners_r1 = zeros(p/2, n);

tmp_fitness = zeros(1, p/2);

for i = 2:2:p

if fitness(ts_r1(i-1)) > fitness(ts_r1(i))

winners_r1(i/2, :) = pop(ts_r1(i), :);

tmp_fitness(i/2) = fitness(ts_r1(i));

else

winners_r1(i/2, :) = pop(ts_r1(i-1), :);

tmp_fitness(i/2) = fitness(ts_r1(i-1));

end

end


% Tournament Selection - Round Two

ts_r2 = randperm(p/2);

winners = zeros(p/4, n);

for i = 2:2:p/2

if tmp_fitness(ts_r2(i-1)) > tmp_fitness(ts_r2(i))

winners(i/2, :) = winners_r1(ts_r2(i), :);

else

winners(i/2, :) = winners_r1(ts_r2(i-1), :);

end

end

new_pop(1:p/4, :) = winners;

new_pop(p/2+1:3*p/4, :) = winners;


% Crossover

crossover = randperm(p/2);

children = zeros(p/4, n);

for i = 2:2:p/2

parent1 = winners_r1(crossover(i-1), :);

parent2 = winners_r1(crossover(i), :);

child = parent2;

ndx = ceil(n*sort(rand(1, 2)));

while ndx(1) == ndx(2)

ndx = ceil(n*sort(rand(1, 2)));

end

tmp = parent1(ndx(1):ndx(2));

for j = 1:length(tmp)

child(find(child == tmp(j))) = 0;

end

child = [child(1:ndx(1)) tmp child(ndx(1)+1:n)];

child = nonzeros(child)';

children(i/2, :) = child;

end

new_pop(p/4+1:p/2, :) = children;

new_pop(3*p/4+1:p, :) = children;


% Mutate

mutate = randperm(p/2);

num_mutate = round(mutate_rate*p/2);

for i = 1:num_mutate

ndx = ceil(n*sort(rand(1, 2)));

while ndx(1) == ndx(2)

ndx = ceil(n*sort(rand(1, 2)));

end

new_pop(p/2+mutate(i), ndx(1):ndx(2)) = ...

fliplr(new_pop(p/2+mutate(i), ndx(1):ndx(2)));

end

3 运行结果

4 参考文献

[1]温清芳. 遗传算法求解TSP问题的MATLAB实现[J]. 韶关学院学报, 2007, 28(6):5.

部分理论引用网络文献,若有侵权联系博主删除。


版权声明

本文仅代表作者观点,不代表博信信息网立场。

热门